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The dynamic scaling properties of the one-dimensional Burgers equation are expected to change with the
inclusion of additional conserved degrees of freedom. We study this by means of one-dimensional �1D� driven
lattice gas models that conserve both mass and momentum. The most elementary version of this is the
Arndt-Heinzel-Rittenberg �AHR� process, which is usually presented as a two-species diffusion process, with
particles of opposite charge hopping in opposite directions and with a variable passing probability. From the
hydrodynamics perspective this can be viewed as two coupled Burgers equations, with the number of positive
and negative momentum quanta individually conserved. We determine the dynamic scaling dimension of the
AHR process from the time evolution of the two-point correlation functions, and find numerically that the
dynamic critical exponent is consistent with simple Kardar-Parisi-Zhang- �KPZ� type scaling. We establish that
this is the result of perfect screening of fluctuations in the stationary state. The two-point correlations decay
exponentially in our simulations and in such a manner that in terms of quasiparticles, fluctuations fully screen
each other at coarse grained length scales. We prove this screening rigorously using the analytic matrix product
structure of the stationary state. The proof suggests the existence of a topological invariant. The process
remains in the KPZ universality class but only in the sense of a factorization, as �KPZ�2. The two Burgers
equations decouple at large length scales due to the perfect screening.
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I. INTRODUCTION

Many nonequilibrium driven systems display scale invari-
ance in their stationary states, i.e., strongly correlated collec-
tive structures without a characteristic length scale limiting
the fluctuations. Such correlations typically decay as power
laws with critical exponents that are universal. Their values
depend only on global issues such as dimensionality, sym-
metry, and specific microscopic conservation laws. The clas-
sification of dynamic universality classes and the determina-
tion of their scaling dimensions is one of the central issues in
current research of nonequilibrium statistical physics �1,2�.
The one-species asymmetric exclusion processes �ASEP�
serves in this context as both the simplest prototype model
for driven one-dimensional �1D� stochastic particle flow
�3–5� and as a fully discretized version of the 1D Burgers
equation �with time and space discretized, and momentum
quantized� �6�.

In this paper we investigate how the properties of such
stochastic flows change with the introduction of additional
bulk conservation laws. The generic expectation is that en-
forcing more conservation laws changes the scaling dimen-
sions. We follow a bottom-up approach. An example of a
top-down approach is the current interest in anomalous 1D
heat conduction in Fermi-Pasta-Ulam-type models �e.g., a
chain of anharmonic oscillators �7�, or a one-dimensional gas
of particles in a narrow channel with different types of inter-
actions �8��. The systems are coupled to heat reservoirs on
either end. Those are held at different temperatures and thus
induce heat flow along the channel. Computer simulations,
e.g., using molecular dynamics, show an anomalous thermal
conductivity �, JQ���T, diverging with system size L as
��L�. The numerical estimates for the value of � in the
various versions of the process vary between 0.22��
�0.44 �7–9�. � is expected to be universal. From the ana-

lytic side, a mode-coupling treatment predicted �=2/5 �10�,
while a renormalization analysis of the full hydrodynamic
equations predicts �=1/3, based on Galilean invariance and
an assumption of local equilibrium in the heat sector �11�. In
our study we add conservation laws to the Burgers equation
instead of coarse graining down from full hydrodynamics.

The equivalences between ASEP, KPZ growth, and the
Burgers equation are well known �6�. ASEP is usually inter-
preted as a process for stochastic particle transport, while the
Burgers equation

�v
�t

=
�

�x
��

�v
�x

+ �v2 + ��x,t�� �1�

represents the evolution of a �vortex-free� velocity field
v�x , t�, and conserves momentum only �12�. The interpreta-
tion of ASEP as a fully discretized Burgers equation poses
some conceptional issues. Due to the full quantization of the
momenta in ASEP, in units of n=0,1, it can appear that the
process also conserves energy. A careful discussion �13�
shows that energy is conserved between updates but fluctu-
ates during each update. Therefore ASEP is a genuine fully
discretized implementation of the Burgers equation from this
direct point of view as well. In Sec. II we discuss how to
impose conservation of particles in addition to conservation
of momentum. This leads naturally to the two-species ASEP
known as the Arndt-Heinzel-Rittenberg �AHR� model
�14,15�. This process has been the focus of intensive studies,
but its dynamic scaling properties seem to have been ig-
nored. Instead, the stationary state properties have been cen-
ter stage, in particular, its clustering, and that it can be con-
structed exactly using the so-called matrix product ansatz
method �16–20�.

We establish that the introduction of this additional con-
servation law to ASEP does not change the universality class,
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but it does so in a rather intricate manner. KPZ scaling
changes to �KPZ�2-type scaling. The AHR process can be
interpreted as a coupled Burgers and diffusion equation, con-
serving both mass and momentum; or as two coupled Bur-
gers equations, one for positive and negative momentum
quanta, separately. The latter point of view turns out to be the
most productive. At large length scales the coupling vanishes
and the process factorizes, in terms of quasiparticles, into
two decoupled Burger processes. This is achieved by means
of perfect screening of fluctuations in the stationary state. We
observe this numerically from the behavior of the two-point
correlators �Secs. IV and V�. The stationary state of the
model is known to satisfy the so-called matrix product ansatz
�14�. We use that property to prove analytically that the per-
fect screening is rigorous �Sec. VI�. In Secs. IV and V we
present also direct numerical evidence that the dynamic criti-
cal exponent is indeed the same as in KPZ, z=3/2, using the
time evolution of the two point correlators. The conventional
methods fail due to time oscillations. This might be the first
example of such a numerical dynamic analysis in terms of
correlation functions.

II. AHR MODEL

Our aim is to construct a generalization of ASEP describ-
ing a process where particle diffusion and the Burgers equa-
tion are coupled to each other. Energy will not be conserved.
The particles in such a model need to carry an internal de-
gree of freedom, representing momentum. A site could be in
four states. It would be empty �nx=0� or be occupied by a
particle �nx=1� with momentum vx= +1,0 ,−1. Particles with
+1 �−1� momentum would hop with a right �left� bias. Some
reflection on the nature of the passing processes �the colli-
sions� shows that we can remove the zero-momentum state
of particles, without loss of generality �13�.

This then leads naturally to the two-species ASEP known
as the Arndt-Heinzel-Rittenberg �AHR� model. The conven-
tional interpretation of this process is in terms of diffusion of
charged particles in an electric field. Two species of particles
with opposite unit charge hop in opposite directions along a
1D lattice ring, driven by the electric field.

+ 0→
p

0 + , 0 − →
p

− 0, + − �
t

r

− + . �2�

Each site x can be in three states, Sx=0, ±1, with S=1 �S=
−1� representing the right �left� moving species and S=0 an
empty site. p is the free directed hopping rate �the electric
field� and r the passing rate of opposite charged particles. In
our study, the numbers of S=1 and S=−1 particles on the
ring are chosen to be equal. Compared to the conventional
single species ASEP, this process has two local conservation
laws instead of one; both species are conserved indepen-
dently.

In the coupled diffusion-Burgers equation interpretation
of the same process, the charge represents a quantum of mo-
mentum moving in the opposite direction as illustrated in
Fig. 1. No driving force is present, because the preferred
hopping direction represents the total derivative in the

Navier-Stokes equation, just as in the single species ASEP.
Similar to ASEP, energy is not a conserved quantity: The
energy of particles is conserved between updates but fluctu-
ates during the updates. That leaves particles in different
places than where they would have been if energy were con-
served �13�.

The AHR model reduces to the Sx= ±1 spin �momentum
quanta� representation of ASEP in the high density limit
where vacant sites S=0 are absent. There, the particle density
cannot fluctuate anymore, and the process falls thus back to
the Burgers equation with only one conservation law. This
limit is singular. The AHR process is not the generic S
=0, ±1 generalization of ASEP in the sense of the KPZ and
Burgers equation. The proper generalization would be the
so-called restricted solid-on-solid �RSOS� model �Kim-
Kosterlitz model� where + and − pairs can be annihilated and
created. Those processes conserve momentum. The S= +1
�S=−1� particles represent up �down� steps in the KPZ-type
interface; the free hopping rate p represents step flow.
Growth at flat terraces is blocked in the AHR process, except
for the deposition of vertical dimers �with rate r� in single-
particle puddles. Figure 1 illustrates this.

This means that from the KPZ point of view the AHR
process represents a growing interface where the number of
up and down steps are individually preserved. Whether this
local conservation law changes the scaling dimensions on
large scales is the central issue we address here. From the
KPZ perspective, your initial guess would probably be “no,”
and from the lattice gas perspective, “yes.” Our results pre-
sented below confirm the “no,” but in a rather subtle manner,
the universality class is “�KPZ�2” instead of simple KPZ.

The AHR model has been widely studied recently, with as
focus the structure of its stationary state �14–19�. We are not
aware of any previous dynamic scaling analysis. The station-
ary state shows strong clustering, as a function of decreasing
passing versus free hopping probability r / p. Stretches of
“empty” road are followed by high density clusters. These

�� � �� � ��� � �

� � �

� � �

��� � �

� � �

� � � ���

��

�
���

��

FIG. 1. �Color online� Two-species asymmetric exclusion pro-
cess �bottom� and its corresponding interface growth model
�middle� and particle flow model with momentum conservation
�top�.
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are mixtures of S= +1 and S=−1 particles. We will identify
the amount of mixing with the quasiparticles and the cluster
size with the screening length.

The passing of + and − particles resembles collisions. The
ratio r / p controls the duration of the collision �the softness
of the balls�. This passing delay creates queuing and is the
origin of the clustering. The full AHR model includes a
reverse-passing probability t, ��−+ �→ �+−�; particles switch-
ing position in the direction opposite to the electric field�.
That enhances the clustering even more. We limit ourselves
here to the t=0 version of the model.

The clustering extends over such large length scales, in
specific ranges of r / p and t / p, that the possibility of a phase
transition into a macroscopic clustered stationary state has
been the major issue �14,15�. Macroscopic cluster condensa-
tion �infinite-sized clusters� have been shown to be impos-
sible using the analytic matrix product ansatz �17� and also
using an approximate mapping onto the so-called zero-range
process �16�. The cluster size remains always finite, but the
maximum value can be far beyond all computation capabili-
ties �17�.

III. PHASE DIAGRAM

Figure 2 shows the phase diagram of the t=0 AHR model
as a function of r / p and �conserved� global average density
	=	+=	−. It contains three special lines: r / p=1, r / p=2, and
	=0.5, respectively.

Along the 	=1/2 line all sites are fully occupied and the
process reduces to the single-species ASEP. From the per-
spective of the AHR process as modeling two coupled con-
served degrees of freedom, momentum and density, the den-
sity sector freezes out, leaving only the Burgers equation.
The 	=1/2 limit is therefore anomalous, and this line is not
the proper backbone of the phase diagram. The dynamic
scaling exponent is equal to z=3/2 along this line, but that
does not need to extend to 	�0.5.

The r / p=1 line and the interpretation of the AHR process
in terms of two coupled Burgers equations form the true
backbone of the phase diagram. At r= p, the process reduces
to a single-species ASEP in two different ways. If the +
particles choose to be blind to the difference between an
empty site and a − particle, they see at r= p no difference
between a free hop and a passing event, and thus experience
pure single species ASEP scaling. The same is true in the
projected subspace where − particles are blind to the differ-
ence between empty sites and + particles. These subspaces
are not perpendicular and the process does not factorize into
two independent ASEP processes. Correlations exist between
the + and − particles, resulting in clustering. We will study
this numerically in the next section and find that at large
length scales the process factorizes after all, into �KPZ�2.

At r�p the particles can still pretend to be blind to the
other species, but then experience updates where the hopping
probability inexplicably changes from p to r. These events
are random, but not uncorrelated. For r� p the clustering
increases and for r
 p decreases. The line r=2p is special;
there the clustering vanishes accidentally altogether.

IV. DYNAMIC PERFECT SCREENING AT r=p

Our investigation of dynamic scaling in the AHR model
started with an attempt to measure the dynamic critical ex-

���

���

FIG. 3. �Color online� The evolution of interface widths with
uncorrelated disordered initial states with r= p=1.0 and 	=0.25 �a�
and flat initial states with r= p=1.0 and 	=1/3 �b� for different
system sizes L.

K
KPZ

Z

FIG. 2. �Color online� Phase diagram for the AHR model as a
function of r / p and �conserved� average density 	=	+=	−.
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ponent z in the conventional manner, i.e., from the time evo-
lution of the interface width starting from a flat or a random
initial state. Recall that the AHR model is a RSOS-type KPZ
growth model with a conserved number of up and down
steps. It turns out that this interface width oscillates in time
while evolving toward the stationary state, as illustrated in
Fig. 3.

The flat initial state evolves roughly in accordance with
conventional scaling, i.e., as W� t�, with �=� /z, at interme-
diate times and saturating at W�L� �with � the stationary
state roughness exponent�, but the oscillations on top of this
behavior are too strong to accurately determine �. These
oscillations reflect the additional conservation law, and are
tied to traveling wave packets propagating in opposite direc-
tions and meeting again after traveling around the lattice
ring.

For the resolution of this problem we turn our attention
towards these wave packets themselves, by monitoring the
manner they spread in time. This is achieved in terms of the
two-point correlators

G+−�x,t� = 	n+�0�n−�x�
 − 	n+�0�
	n−�x�
 , �3�

and G++ and G−−, where n±�x� is the number operator for ±
particles at site x and at time t. The perfect screening phe-

nomenon in the stationary state emerged while we tested this
method. In this section we first present and discuss perfect
screening and then present the numerical analysis of the dy-
namic exponent, both at r= p.

A. Stationary-state correlation functions

In the stationary state, the correlation function

G+−�x� = 	n+�0�n−�x�
 − 	2 �4�

decays exponentially toward zero. Figures 4 and 5 illustrate
this, using Monte Carlo �MC� simulations for periodic
boundary conditions for small rings, L�800. The correlation
function decays exponentially for x
0 and is zero for x
�0. Correlations are absent at x�0, because after passing, −
and + particles hop away from each other, and �at r= p� do
not communicate with each other anymore.

The correlation length is rather short in Fig. 4, �5, but
increases with density along the r= p line. The most signifi-
cant aspect is not the correlation length, but the absence of
any finite-size scaling offset G+−�x��B /L for x� and x
�0.

The absence of this offset is quite surprising. It indicates a
“perfect screening” localization-type phenomenon in the
fluctuations. To appreciate this, consider the two-point corre-
lation in a random disordered state, such as the single species
ASEP stationary state. The G++ and G−− correlators in our
model have exactly that form at r= p because each couples
only to one of the two projected single-species ASEP sub-
spaces. Such correlators are � functions �with negative
G�0� /L offsets� because periodic boundary conditions imply
rigorous global conservation of the total number of particles,
and impose the condition that the total area underneath G�x�
is exactly equal to zero.

Another way of viewing this starts by realizing that
G+−�x� /	 can be interpreted as the probability to find a −
particle at distance x from a tagged + particle at site x0. The
tagging removes an amount of probability 	 from x0 corre-
sponding to the �untagged� probability of finding a − particle
at x0. This amount is redistributed over the chain. In general,
we would expect that part of this expelled probability re-
mains localized near x0, represented in G+− by the area un-
derneath the exponential; and that the remainder is distrib-
uted uniformly over the chain in delocalized form,
represented by a uniform B /L-type finite size offset in G+−.
For uncorrelated �-function-type correlations all of it is de-
localized, such that B=	2. Our numerical simulations, see
Fig. 5, put a bound on the delocalized amplitude; e.g.,
�B � /L�8�10−6at L=800 for 	=0.25. The delocalized frac-
tion is zero within the MC noise.

So surprisingly, in our process all the excluded probability
is localized, such that

G+−�0� = − �
y=1

y=a

G+−�y� �5�

for all �a�L. A person riding on top of a specific + par-
ticle and wearing glasses that filter out the − particles, ob-
serves a perfect single-species ASEP in terms of the + par-

0
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FIG. 4. �Color online� G+−�x� in the stationary state with r= p,
	=0.25, and L=800.

-0.0001

0

0.0001

0.0002

0 10 20 30 40 50

G
+

-(
x)

x

L=20
L=100
L=200
L=800

FIG. 5. �Color online� Offsets of G+−�x� in stationary states for
L=20,100,200,800 with 	=0.25.
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ticles. Without glasses she notices, however, an excess of −
particles in front of her. This cloud of size  has on average
an excess mass equal to 	.

B. Factorization from perfect screening

The above perfect screening implies that the AHR process
at r= p behaves at coarse grained scales as two decoupled
single-species Burgers equations. This factorization is easily
recognized in the interface growth representation. Recall that
the + particles represent up steps and the—particles down
steps, and that the number of both are conserved. Perfect
screening means factorization into two decoupled KPZ inter-
face growth processes at length scales x� �one where down
steps are being ignored and the other where the up steps are
ignored�.

The interface width W�x� of the full model over a section
of the interface of length x can be expressed in terms of the
two-point correlators as

W�x�2  	�h�x� − h�0��2
 =���
y=0

x

„− n+�y� + n−�y�…�2�
=���

y=0

x

�n+ − 	+� − �
z=0

x

�n− − 	−��2�
= �

y,z=0

x

�G++�y − z� + G−−�y − z�

− G+−�y − z� − G−+�y − z�� . �6�

G++ and G−− are � functions at r= p and their finite-size off-
sets are absent in the thermodynamic limit L→�,

W�x�2 = x�	+ − 	+
2� + x�	− − 	−

2� + 2x�	2 − A+−� .

Moreover, at length scales much larger than the screening
length, x�, the cross-correlator area A+−�y=1

x G+−�y� re-
duces to A+−=	2 by perfect screening, such that the G+− con-
tributions vanish completely.

W�x�2 = x�	+ − 	+
2� + x�	− − 	−

2� = W�x; + �2 + W�x;− �2.

�7�

The square of the full interface width is thus equal to the sum
of the squared interface widths in the two projected sub-
spaces at x�. The two coupled Burgers equations behave
independently at length scales x�.

C. Dynamic exponent from G+−„x , t…

Figure 6 shows the time evolution of the G+− correlation
function starting from an initial uncorrelated disordered state
�a � function with a finite-size offset�. The buildup of the
cluster of − particles in front of the tagged + particle requires
only a short time span �0. The buildup of this surplus is
mirrored by the buildup of a depletion layer behind the +
particle �particle numbers are locally conserved�. After the
screening cloud at x
0 is fully established, t
�0, the deple-
tion packet detaches from x=0 and travels to the left. This
traveling wave packet belongs to one of the two projected
single-species ASEP subspaces and therefore should spread
in time with KPZ dynamic exponent z=3/2 as w� t1/z. The
Gaussian form
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FIG. 6. �Color online� G+−�x , t� at a series of time t=100, 200,
300, 400 with r= p=1.0, 	=0.25, and L=800. The group velocity is
equal to vg=2p�1−2	�=1.
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FIG. 7. �Color online� Widths and heights of the wave packets
in G+−�x , t� at series of time t for p=r=1.0 and L=3200. A line
corresponding to z=1.5 is drawn above the data points in the upper
figure.

DYNAMIC SCREENING IN A TWO-SPECIES ASYMMETRIC… PHYSICAL REVIEW E 76, 021107 �2007�

021107-5



�G+−�x,t� � t−1/z exp�−
�x − vgt�2

Dt2/z � ,

fits the wave packet very well �21� except at times close to
t=�0= /vg, where it is slightly skewed. The packet’s group
velocity vg follows the expected value vg=2p�1−2	�, i.e.,
twice the group velocity of fluctuations in the − or + sector
single-species ASEP. �2vg is the relative velocity of fluctua-
tions in the + and − sectors, respectively, propagating in
opposite directions.� The traveling depletion wave packet
moves around the ring while broadening. It collides after one
period with the screening cloud. They split off again. This
keeps repeating itself, until the broadening has spread all
over the ring and cancels out against the global finite scaling
offset of the initial state.

Figure 7 shows the time evolution of the width of the
wave packet w and its height h. They obey power laws: w
� t1/z and h� t−1/z. From these, we obtain estimates for the
dynamic exponent z, and Fig. 8 shows the finite-size scaling
behavior of these estimates. They converge to z=1.53�2�,
consistent with the expected KPZ value z=3/2. This con-
firms that this way for determining z works well.

V. DYNAMIC SCREENING AT rÅp

The correlation functions G+− and G++ take more intricate
shapes away from the r= p line. Remarkably, as we will dis-
cuss next, this variety of shapes convert back into the simple
shapes of r= p using a quasiparticle representation. We dis-
covered this numerically, as presented in this section, and
then proved it analytically, as presented in the next section.
The properties at the r= p line, perfect screening between
particles of opposite charge, and uncorrelated disordered sta-
tionary state statistics in the two projected subspaces, extend
thus to all r / p in terms of quasiparticles, and the final con-
clusion from this is that the process factorizes into �KPZ�2

everywhere for all r / p.

A. Stationary-state correlation functions

Figure 9 shows the G+− and G++ correlators for various
values of r / p. Compared to the r= p shapes, G+− develops
correlations at x�0, and G++=G−− changes from a � function
into a symmetric correlated shape. This can be explained
qualitatively as follows. At r�p, the + and − particles can-
not choose to be blind with respect to each other anymore.
Additional correlations buildup compared to the r= p base-
line behavior.

At r� p the passing versus hopping rate is reduced. The
screening cloud at x
0 in G+− therefore grows �the cluster-
ing is stronger�. This enhanced G+− screening cloud at x
0,
results in short-range correlations between alike particles as
well; G++�x�=G−−�x� develops positive tails. This is a second-
order effect. Those ++ particle correlations in turn induce
positive correlations in G+−�x� for x�0. This is a third-order
effect, and thus an order of magnitude further down.

At r
 p the passing rate is enhanced with respect to the
r= p baseline behavior. The x
0 screening cloud in G+−�x� is
thus smaller than at r= p. The correlations in G++=G−− are
indeed negative, and represent a reduced probability to find
alike particles near each other. This reduced probability
makes it less likely to find + particles behind the tagged +
particle, at x�0. If those + particles had been there, they
would carry smaller screening clouds in front of them. Their
absence therefore creates still positive correlations between −
particles at x�0 and the tagged + one.

At r=2p the stationary state is fully disordered �14�, the
clustering vanishes, and all correlation functions reduce there
to � functions. At r
2p the correlation tails reemerge, but
with opposite signs.

B. Dynamic exponents from G+−„x , t… and G++„x , t…

We examine the temporal evolution of G+−�x , t� and
G++�x , t� using MC simulations, just as we did in the r= p
case. The initial states are prepared to be uncorrelated and
disordered. As shown in Fig. 10, two wave packets appear,
with different amplitudes, but moving in opposite directions
with the same speed. The wave packets in G+− are strongly
coupled to those in G++. These traveling clouds are generated
by the same type of mechanism as the one at r= p, i.e., the
result of the rather fast buildup of the screening clouds near
the tagged particle, reflected by the short-distance correla-
tions in the stationary state. Both traveling clouds are mix-
tures of + and − particles, with nonzero projections in both
G++ and G−−.

Once the clouds are detached from x=0, they move inde-
pendently of each other in opposite directions, just as at r
= p. The process factorizes again. But there is no a priori
reason why these mixed traveling clouds at r�p should
spread as in pure KPZ. However, they do. In our MC simu-
lations they spread, e.g., at r=0.5, p=1.0, and 	=0.25, with
z=1.54�2� and at r=0.7, p=1.0, and 	=0.25 with z
=1.51�2�. Figures 11 and 12 show strong finite-size correc-
tions to the scaling in the dynamic exponents, but the limit-
ing behavior is clear.

Moreover, at r=2p, the stationary state is totally uncorre-
lated and disordered �and the temporal evolutions of the cor-
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FIG. 8. �Color online� The estimates of the dynamic exponent z
for finite system sizes L=1200,1600,2000,2400,2800,3200,6400.
Analyses of finite-size correction to the scaling shows the estimate
of dynamic exponent is equal to 1.53�2�.
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relation functions therefore do not involve traveling wave
packets�. We can apply the conventional method to estimate
the dynamic exponent. The temporal evolution of the inter-
face widths �see Figs. 13 and 14�, yields z=1.51�1�.

C. Perfect screening in the quasiparticle representation

If indeed the dynamic exponent retains �KPZ�2-type value
at r�p as suggested by the above numerical results, then
there might be a quasiparticle description in which the pro-
cess factorizes at large length scales and in which the fluc-
tuations are perfectly screened, just as at r= p. We found
such a description, first numerically as described here, and
then rigorously analytically in the following section. This
implies the process obeys �KPZ�2 scaling everywhere. In
terms of quasiparticles the dynamic process fully factorizes
into two KPZ processes at large coarse-grained scales.

Consider the stationary-state correlation functions in Figs.
9 and 10: the correlation functions decay to 1/L-type finite-
size scaling offsets. The area A underneath G+− for x
0, the
area B underneath G++ at x
0 �equal to the same for x�0�
and the area C underneath G+− for x�0 obey empirically the
relation B /A=C /B, for all r�p, typically with a numerical
accuracy 1−B2 /AC=0.01%. �The areas are measured with
respect to the offsets.�

This special balance in the areas relates to a specific
amount of mixing between + and − particles in the clouds,
and suggests �a much stronger property� the existence of a
quasiparticle representation,

np = �n+ + �n−, nm = �n+ + �n−, �8�

with n± the number operator for + and − particles and

�

�
=

B

A
=

C

B
, �9�

in which the correlation functions Gpp�x�=Gmm�x� and
Gpm�x�, defined as

G���x�  	n��0�n��x�
 − 	n��0�
	n��x�
 , �10�

with � ,�= p ,m reduce to the same shapes as the particle
correlators at r / p=1 �where Gpp�x� is a � function and Gpm

has only one tail and shows perfect screening between qua-
siparticles of opposite charges�.

The mixing ratio R=� /� varies from R=� /�=0 at r= p
�with np=n+ and nm=n−�; to R=� /��1 when np=nm, and to
R=� /�=−1 when np=−nm. Figure 15 shows lines of R from
our analytic expression in Sec. VI F. Our numerical results
are completely consistent with this. The mixing strength in-
creases with density 	, and becomes indeterminate at the line

���
�

�

(d)

���
�

�

���

���

���

FIG. 9. �Color online� Station-
ary correlation functions G+−�x�
�left column� and G++�x� �right
column�, for p=1.0, r=0.5, and
	=0.25 for L=3200 ��a� and �b��,
p=0.7, r=1.0, and 	=0.25 for L
=800 ��c� and �d��, and p=0.3, r
=0.9, and 	=0.25 for L=800 ��e�
and �f��.
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	=0.5, where all sites are fully occupied. At r / p=2 the sta-
tionary state is totally disordered, but R does not vanish since
+ and − remain strongly correlated dynamically �22�. Both �
and � go to zero and change sign across the r / p=2 line.

VI. PERFECT SCREENING AND THE MATRIX PRODUCT
STATIONARY-STATE STRUCTURE

In this section, we prove analytically the perfect screening
of the �quasiparticles� pair correlators, using the matrix prod-

uct ansatz �MPA� structure of the stationary state. The proof
applies to all r / p, but for clarity we split up the discussion.
First, we review briefly the general properties of MPA sta-
tionary states. Next, we present the proof at r= p, and finally
generalize it to all r / p in terms of quasiparticles.

A. MPA-type stationary states

Stationary states of stochastic dynamic processes are typi-
cally very complex with intricate long-range effective inter-
actions between the degrees of freedom �when writing the
stationary state in terms of effective Gibbs-Boltzmann fac-
tors�. The long-range aspect is important; 1D driven stochas-
tic processes can undergo nontrivial phase transitions, while
1D equilibrium degrees of freedom with short-range interac-
tions cannot. MPA states are linked to equilibrium distribu-
tions and therefore lack long-range correlations.

MPA stationary states are of the form �14,15,17�

Ps���i�� =
1

Z
Tr�G�1

G�2
¯ � , �11�

with in our case �i= + ,0 ,−. This structure resembles closely
the transfer-matrix formulation of partition functions in one

���

�

�

���

�

���

(d)

�

FIG. 10. �Color online� �a� Correlation function between + and
− at t=1000 and 1400 with p=1.0, r=0.5, and L=6400. The initial
state is random disordered. �b� The corresponding correlation func-
tion between + and +. �c� G+−�x , t� for t=300, 450 with p=0.7, r
=1.0, and L=6400. �d� The corresponding G++�x , t�.

1.53

1.56

1.59

0 0.0001 0.0002 0.0003 0.0004

z(
L)

1/L

Width
Height

FIG. 11. �Color online� The estimates of dynamic exponent z for
different system sizes at p=1.0, r=0.5, and 	=0.25.

1.5

1.52

1.54

1.56

0 0.0003 0.0006 0.0009

z(
L)
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FIG. 12. �Color online� The estimates of dynamic exponent z for
different system sizes at p=0.7, r=1.0, and 	=0.25.
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dimensional �1D� equilibrium statistical mechanics. Con-
sider, for example, a one-dimensional Ising model, with spin
S= ±1 degrees of freedom at sites i+ 1

2 , that interact as

E = �
i

K��i�Si+1/2Si−1/2, �12�

and with a degree of freedom �i=0, ±1 on every bond i such
that bond energy K��i� can have three distinct values. In that
case, the G�i

are 2�2 transfer matrices and the stationary-
state probability for the yet unrelated stochastic dynamic
process is the Ising equilibrium partition function for a given
��i� configuration,

Ps���i�� = �
�S�

e−E���,S��. �13�

The normalization factor

Z = �
��i�,*

Ps���i�� �14�

is the canonical partition function of the annealed random
bond 1D Ising model. The stochastic driven nonequilibrium
dynamics typically imposes constraints on the �i degrees of
freedom. In our dynamic process the number of each species
of particle �=± is conserved independently. This is denoted
by * in Eq. �14�.

The � variables do not couple to each other directly in Eq.
�13�; all correlations between � degrees of freedom are me-
diated by the Ising field Sx. The search for a possible MPA
structure of the stationary state is therefore the search for the
existence of a representation in which all correlations be-
tween the original � degrees of freedom are carried by a new
auxiliary field and expressed as short-range interactions be-
tween those new degrees of freedom. Those auxiliary de-
grees of freedom can take any form, not just Ising spins,
because the rank of the G matrices and their symmetries can
be arbitrary. For example, in our case, the rank will be infi-
nite, and the auxiliary field can be interpreted as �integer-
valued� interface-type degrees of freedom, denoted as nx
=0, ±1, ±2, . . ..

The transfer-matrix product structure, Eq. �11�, implies
that those auxiliary degrees of freedom interact by nearest-
neighbor interactions only. This is actually unfortunate, be-
cause in short-ranged 1D equilibrium systems, such as Eq.
�13�, spontaneous broken symmetries and phase transitions
are impossible. Therefore, master equations with MPA sta-

(a)

(b)

FIG. 13. The temporal evolution of the interface widths starting
from initial flat interfaces for p=0.5, r=1.0, and 	=0.25. �a� The
evolution of the widths for different system sizes only shows oscil-
lations for t�200. �b� The dynamic exponent is estimated by mea-
suring the slopes of log-log plot of the interface width vs time.

1.5

1.55

1.6

1.65

0 0.0002 0.0004 0.0006

z(
L)

1/L

FIG. 14. �Color online� The estimate of dynamic exponent z for
different system sizes at p=0.5, r=1.0, and 	=0.25.
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FIG. 15. Contour plot of � /� in a parameter space of r / p and 	
�see Eq. �49��.
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tionary states have at best dynamic phase transitions with
trivial scaling properties �associated with an abrupt change in
the G representation�. For example, MPA representations of
directed percolation or directed Ising-type processes cannot
exist, because both are believed to have transitions with
complex scaling dimensions. Still, the MPA method has been
proved to be a powerful tool, its algebraic structure is very
elegant, and a surprisingly large class of 1D stochastic dy-
namic processes have a MPA-type stationary state.

Boundary conditions play an important role. Equation
�14� is a canonical partition function, where the number of +
and − particles are each conserved. Consider instead the gen-
erating function

Z = �
��i�

z−
N−z+

N+Ps���i�� = Tr��z+G+ + z−G− + G0�L� = Tr�ML� ,

�15�

with

M = z+G+ + z−G− + G0. �16�

This would be the grand canonical partition function of, e.g.,
the above annealed random bond 1D Ising model in case of
periodic boundary conditions. z± are the fugacities of the �±
particles. The equivalence between the ensembles in the ther-
modynamic limit is ensured in the equilibrium interpretation,
where the details of how the particle reservoirs couple to the
system does not have to be addressed. This is different in the
interpretation of the MPA as the stationary state of a driven
stochastic process. Dynamic processes are very sensitive to
boundary conditions. For example, a process with open
boundary conditions and reservoirs at the edges conserves
the number of particles everywhere inside the bulk, and be-
haves very differently from the one where the reservoirs
couple directly to every site. Not surprisingly, therefore, the
MPA method only applies to the stationary state; the intro-
duction of the auxiliary field does not address the stochastic
dynamics, nor the temporal fluctuations in the stationary
state. For periodic boundary conditions, as in our case, the
grand canonical partition function, Eq. �15�, represents an
ensemble of dynamic systems, each with periodic boundary
condition systems, and fixed values of N− and N+, weighted
with respect to each other by the fugacity probability factor.
In this sense the ensembles are equivalent in the thermody-
namic limit. In our discussion below we use the grand ca-
nonical ensemble. The correlation functions for x
0 are
evaluated then as

G+−�x� =
1

�B
2 �	B�G+� M

�B
�x−1

G−�B
 − 	B�G+�B
	B�G−�B
�
�17�

in the thermodynamic limit, with �B
 and 	B� the right and
left eigenvectors of the largest eigenvalue �B of the operator
M defined in Eq. �16�. The correlator at x=0, 	n+n−
, poses
somewhat of a problem. It cannot be expressed as simple as
this due to the intrinsic off-diagonal character of the above G
operators. At r= p this is not an issue, because 	n+n−
=0.

However, that will not be true anymore for the quasiparticles
at r�p.

B. Quadratic algebra

The first step in identifying whether the stationary state of
a stochastic process might have a MPA structure, is to insert
Eq. �11� into the master equation. If lucky, the condition of
stationarity can be expressed as simple algebraic conditions
on the G� transfer matrices. The MPA structure of our pro-
cess has been studied extensively recently �14–19�. From
those studies we know that the three G� must obey the qua-
dratic algebra as follows:

rG+G− = − x−G+ + x+G−,

pG+G0 = − x0G+ + x+G0,

pG0G− = − x−G0 + x0G−, �18�

with x0 and x± arbitrary yet unspecified parameters. These
conditions apply to the entire phase diagram, for all r / p. The
next step is to find explicit representations of the G� that
satisfy Eq. �18�, using the freedom in choice of the param-
eters xi. In general, the rank of the G� does not close, but
remains infinite. The rank is finite only along special lines in
the phase diagram. Fortunately, for our purposes we do not
need closure; the quadratic algebra structure itself is suffi-
cient to prove perfect screening.

Our process is invariant under simultaneous inversion in
space x→−x and of charge +↔− in the case that the num-
bers of + and − particles are balanced. This suggests we look
for a realization of the algebra with operators satisfying G+
=G−

T and G0=G0
T. This invariance is valid in the subspace

x+=−x−=r and x0=0 �14�, where the quadratic algebra re-
duces to

G+G− = G+ + G−,

G+G0 = G0G− =
r

p
G0. �19�

C. r=p quadratic algebra

At r= p, the quadratic algebra of Eq. �19� is easily
checked to be satisfied by the operators �15�

G+ = I + L−, G− = I + L+, G0 = �0
	0� . �20�

The rank of these matrices is infinite. The auxiliary degrees
of freedom are �positive only� integer-valued “height vari-
ables” n=0,1 ,2 , . . .. G0 is the projection operator onto the
n=0 state, and L± are the raising �lowering� operators
L± �n
= �n±1
.

We need to determine the eigenvalues of the grand ca-
nonical transfer matrix, Eq. �16�,

M = zG+ + zG− + G0 = z�2I + L+ + L−� + G0. �21�

This matrix has several interpretations. It is the transfer ma-
trix for the equilibrium partition function of a one-
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dimensional interface in the presence of a substrate �all n
�0 are excluded� with a short-range attractive potential at
n=0; like a substrate. Such an interface layer is thin and
nonrough. It is also the time evolution of a 1D random
walker �with x playing the role of time and n that of space� in
half space, n�0 and an on-site attractive interaction at site
n=0. Such a random walker is localized. The latter can be
presented also as the localization of a single quantum me-
chanical particle hopping on a semi-infinite chain with a
�-function attractive potential at the first site,

H  2I − L+ − L− −
1

z
G0, �22�

with M =4z�1− 1
4H�.

This simple Hamiltonian has one single bound state and a
continuum spectrum of extended states. The calculation of
the eigenspectrum is elementary and straightforward. The
eigenstates ��
= ��0 ,�1 , . . . �, satisfy the equations

�2 −
1

z
��0 − �1 = E�0,

− �n−1 + 2�n − �n+1 = E�n for n � 1. �23�

Bound states have the generic form

�n =
1

�ZB

wb
n for n � 0. �24�

Substitution in Eq. �23� yields only one bound state, with
energy EB=2−1/wb−wb, such that

�B =
z

wb
�1 + wb�2, �25�

and normalization

ZB =
1

1 − wb
2 . �26�

wb is equal to wb=z.
The extended eigenstates are scattered waves, with

�0 =
A0�k�
�Z�k�

, �n =
1

�Z�k�
cos�kn + �k� . �27�

The eigenvalue equations at n
1 yield the energy spectrum
E�k�=2�1−cos k�, with 0�k��, such that

��k� = 2z�1 + cos k� , �28�

and those at n=0,1 yield the phase shift �k,

A0�k� = cos��k� = z cos��k − k� =
z cos��k + k�
2z − zEk − 1

. �29�

The normalization factor

��0�2 + �
n=1

D

��n�2 = 1 → Z�k� = �A0�2 +
1

2
D �30�

is proportional to the rank of the matrices D, and thus strictly
speaking infinite; D will drop out in our calculations below.

The n=0 component is easily evaluated as follows:

�0
2 = �	0�k
�2 =

2

D

z2 sin2 k

z2 − 2z cos k + 1
. �31�

D. Perfect screening at r=p

Perfect screening implies that

�
x=1

�

G+−�x� = − G+−�0� , �32�

i.e., that the sum over x
0 of the correlator Eq. �17�,

S = �
x=1

�

G+−�x� �33�

is equal to the right-hand side of Eq. �32�,

S = 	2 = z2� �p

�B
�2

, �34�

with 	=z�p /�B, using that the bound state is also an eigen-
state of G+, G+ �B
=�p �B
= �1+wb� �B
. In our specific case
the density is simply equal to 	=z / �1+z�, but we like to
keep the derivation as generic as possible.

We need to demonstrate that this sum rule is valid in the
thermodynamic limit, and track carefully any terms that scale
as system size L. For example, as discussed already in detail
above, the sum rule is trivially true for periodic boundary
conditions, but then does not imply perfect screening, be-
cause any unscreened surplus can be spread out over the
entire lattice in the form of a 1/L background density.

Define PB= �B
	B�, as the projection operator onto the
bound state, and rewrite Eq. �17�, as

S = �
x=1

D

G+−�x� =
z2

�B
2 	B�G+�

x=1

D �� M

�B
�x−1

− PB�G−�B
 .

�35�

The bound state does not contribute to the correlators inside
the sum. Therefore we can project out the bound state from
M and then perform the summation

S =
z2

�B
2 	B�G+��

x=1

D � M

�B
− PB�x−1

− PB�G−�B


=
z2

�B
2 	B�G+� 1

1 −
M

�B
+ PB

− PB�G−�B
 . �36�

�The single PB outside the summation originates from the x
=1 contribution.� We can remove G+ and G− from the above
equation, because the bound state is also an eigenstate of the
lowering operator G+ �B
=�p �B
,
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S =
�	B�0
�2

�B
2 	0�� 1

1 −
M

�B
+ PB

− PB��0
 , �37�

writing zG±=M −G0−zG�, and using that G0= �0
	0� is the
projection operator onto the first site, and also that M
−�BPB has no projection onto �B
.

The sum rule we seek is now reduced to the identity

�
k�B

�	0�k
�2

�B − �k
=

z2�p
2

�B�0
, �38�

with �0= �	B �0
�2= 	B �G0 �B
 =	B �M −z�G++G−� �B
 =�B

−2z�p. The left-hand side is easily evaluated, using Eq. �31�
and that �B−�k=z2−2z cos k+1,

�
k�B

�	0�k
�2

�B − �k
=

2

�
�

0

�

dk
z2 sin2k

�z2 − 2z cos k + 1�2 . �39�

This is an elementary contour integral along the unit circle in
the complex w=eik plane, with a double pole at w=wb=z
within the circle in addition to a single pole at w=0. The
integral is indeed equal to z2 / �1−z2�, the right-hand side of
Eq. �37� ��p

2 =�B= �1+z�2 and �0=1−z2�.

E. Quadratic algebra at rÅp

The proof of perfect screening for general r / p follows the
same pattern as at r= p. The operators obeying the quadratic
algebra conditions, Eq. �19�, are again expressed in terms of
raising and lowering operators L± �14–19�,

G+ =
1

a
�I + L− + �a − 1�G0 + �s − 1�G0L−� ,

G− =
1

a
�I + L+ + �a − 1�G0 + �s − 1�L+G0� ,

G0 = �0
	0� , �40�

where a=r / p and s2=1− �a−1�2. The transfer matrix retains
its form,

M = zG+ + zG− + G0 =
4z

a
�1 −

1

4
H� , �41�

with modified Hamiltonian,

H  2I − L+ − L− −
1

z̃
G0 − �s − 1��G0L− + L+G0� , �42�

and with 1/ z̃a /z+2�a−1�. This is again a one-dimensional
single-particle hopping process in a half space, n
=0,1 ,2 , . . .. Compared to Eq. �22� for a= r

p =1, the attractive
potential at site n=1 deepens for r
 p �reducing the cluster-
ing and correlation lengths�. The novel element is the modi-
fied hopping probability s between sites n=1 and n=0. There
is still only one bound state

�n =
1

�ZB

wb
n for n � 1,

�0 =
1

�ZB

1

s
,

1

z̃
=

1

wb
+ �1 − s2�wb, �43�

with the same functional form for the bound-state energy as
before, Eq. �25�.

The derivation of the extended states is also straightfor-
ward. They are again of the form, Eq. �27�, with the same
energies, Ek=2�1−cos k�, but satisfying the modified rela-
tions

sA0�k� = cos��k� =
s2 cos��k + k�

2 cos k −
1

z̃

. �44�

This leads after some algebra to

�0
2 =

�wb�wb − 1�sin2 k2/D

�wb + wb
−1 − 2 cos k��wb� + wb�

−1 − 2 cos k�
. �45�

wb� is the second root of the bound-state equation, Eq. �43�.

F. Quasiparticle representation

We can now identify the exact form of the ratio � /� in
the quasiparticle representation, Eq. �8�. The representation
mixes the G± operators in Eq. �40� as

Gp = �G+ + �G−, Gm = �G+ + �G−. �46�

The projection operator G0= �0
	0�, and the transfer matrix M
are invariant. The latter implies �+�=1.

The quasiparticle two-point correlation functions take the
same form as the particle correlators at r= p. In particular,
the quasiparticle correlation function Gpm�x� is zero for all
x�0. This is true when the bound state is also an eigenstate
of Gp as follows:

Gp�B
 = �p�B
 . �47�

Inserting the bound state, Eq. �43�, yields

a�p = 1 + �wb +
�

wb
, �48�

and

�

�
=

�s2 − 1�wb − �1 − a�
1/wb + �1 − a�

. �49�

The lines of constant � /� are shown in Fig. 15. �Insert the
above equations for �b, z̃, and the relation between a and s.�
The contours coincide with our numerical results.

G. Perfect screening at rÅp

The final step is to prove perfect screening in terms of the
quasiparticles as follows:
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S = �
x=1

�

Gpm�x� = − Gpm�0� . �50�

The left-hand side reduces to exactly the same form as Eq.
�37�, using the exact same steps, because the bound state is
an eigenstate of Gp just like the particle operator G+ at r
= p; that is all we used there. The right-hand side is different,
because 	npnm
=2��	 is not zero anymore. Since �+�=1,
it is still true that 	p=	m=	+=	−=z�p /�B. Therefore, the
sum rule equation, Eq. �38�, now takes the form

�
k�B

�	0�k
�2

�B − �k
=

1

�0
� z2�p

2

�B
− 2��z�p� , �51�

with, as before, �0= �	B �0
�2= 	B �G0 �B
 =	B �M −z�Gp

+Gm� �B
 =�B−2z�p. The summation on the left leads again
to a w=eik-type contour integral. It still has only two poles
inside the unit circle: one double pole at w=wb and one
single pole at w=1/wb� �with wb� the second root of Eq. �43�.�
The result is indeed equal to the right-hand side after insert-
ing the proper expressions for the various eigenvalues and
some not very pretty algebra.

VII. RESULTS AND CONCLUSIONS

We have studied the two-species asymmetric exclusion
process �ASEP� to determine whether the addition of a local
conservation law changes the dynamic scaling properties. In
the Burgers �hydrodynamics� context the process conserves
both momentum and density. In the KPZ context it represents
interface growth where the numbers of up and down steps
are conserved. In the ASEP context the particle numbers of
both species are conserved.

We find that the dynamic scaling exponent retains the
KPZ z=3/2 value. The AHR process factorizes at scales
larger than the clustering length scale  into two independent
KPZ processes. At r= p, where the passing and hopping
probabilities are equal, this factorization occurs in terms of +
and − particles, while at r�p it is established in terms of
quasiparticles. This factorization expresses itself as perfect

screening between the two species of quasiparticles. , the
screening length, coincides with the clustering length scale
and represents the crossover length scale between single
KPZ scaling �within each cluster� and factorized
�KPZ�2-type scaling.

The conventional method for measuring the dynamic ex-
ponents in simulations in terms of the time evolution of the
interface width fails in this process due to the presence of
time oscillations with a period proportional to the system
size; quasiparticle fluctuations have nonzero and opposite
drift velocities. Instead, we determined the dynamic scaling
from the two-point correlation functions. This might be the
first time that it is done in this manner.

The stationary state of this process has been studied ex-
tensively in the recent literature, because it obeys the so-
called matrix product ansatz �MPA�. We used this to prove
rigorously the factorization of the fluctuations in terms of
quasiparticles. This previously unknown feature of the alge-
braic structure of the MPA method needs to be understood
better, in particular, in the context of clustering phenomena
in general.

The perfect screening phenomenon is clearly a topologi-
cal feature. The above presentation only partially exposes
those topological properties; by bringing the perfect screen-
ing condition into the form of Eqs. �38� and �51�. The right-
hand sides of both equations only involve bound-state prop-
erties. Their left-hand sides, however, involve a summation
over all extended states; i.e., their projections onto n=0
��	0 �k
�2�. The poles of the contour integral links this to the
bound states and the quasiparticle mixing. The formulation
of a general proof is important because, if topological, the
prefect screening and �KPZ�2 scaling at large length scales
will be generic features, valid to many more processes with
clustering. Its limitations can teach us when and how novel-
type dynamic scaling sets in.
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